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1. INTRODUCTION

We are interested in the study of how sound propagates through musical horns,
for example, a trumpet. In this paper we describe a simple, high-order numeri-
cal method for the simulation of sound wave propagation through axisymmetric,
sound–hard waveguides. The simplest and widely used musical horns are axisym-

1Advisor: Yu Chen. Reader: Leslie Greengard
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metric, and the underlying mathematical problem is that of obstacle scattering in
R3, which we will investigate here.

As is well-known, the axisymmetric problem in R3 can be easily recast as a
sequence of obstacle scattering problems in R2 by means of the rotational symmetry;
therefore the efficiency of a computational scheme is not an issue for medium to
high frequencies. One of the most efficient mathematical models for the obstacle
scattering problem are boundary integral equations based on classical potential
theory. With this approach, scattering problems of up to 1000 wavelengths (as
measured in the leading linear dimension) can be solved directly with the current
hardware; this is more than adequate for most applications in the simulation and
design of acoustic horns.

However, the reduction by rotational symmetry makes the resulting Green’s func-
tion extremely complicated in terms of the algebraic structures of its logarithm sin-
gularity, which renders existing spectrally convergent quadrature formulae useless.
In fact there is no successful effort, to our best knowledge, in addressing this difficult
issue of separating the logarithm singularity from the Green’s function to obtain a
spectrally convergent quadrature formula for the boundary integral equation.

The solution method we present here avoids the separation of the singularity,
and at the same time maintains spectral convergence, all at the expense of a higher
condition number of the resulting linear system to be solved. The high condition
number does not cause any instability (see Section 8) but the spectral convergence
stops when the error drops to about 10−8.

A major advantage of the new approach is the simplicity of coding. There is
no need to design quadratures for singular integrals and only discrete points are
needed on the curves and surfaces of the scatterer, not “elements”, or collections
of low–order spline curves or surfaces.

2. ACOUSTIC BACKGROUND
If sound waves propagating in air are low intensity, the acoustic propagation of

these waves is well modeled by a linearization of the Euler equations of gas dynamics
[19] which results in the linear wave equation

∇2p(x, t)− 1
c2
∂2p(x, t)
∂t2

= 0 (1)

where x is a point in R3, p(x, t) is an acoustic pressure disturbance field, t is time,
and c is the speed of sound2. Air does not become appreciably non–linear until
well above the levels required to produce immediate hearing damage in humans,
and so this linearization is valid for sounds created by musical instruments, or
even from sound produced by high–power loudspeakers. c varies with changes in
atmospheric pressure, temperature, and humidity, but for small acoustic problems
it can assumed to be constant. Here by “small” we mean sound propagation in
still air with distances of less than a hundred meters. The value commonly used
for room temperature and standard atmospheric pressure is a wave speed of 343
meters per second.

2In our notation we will use bold to denote variables that represent points in R3
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Under the standard time-harmonic assumption, and with ω as the angular fre-
quency

p(x, t) = Real{u(x)e−iωt} (2)

we find that u satisfies the Helmholtz equation

4u(x) + k2 u(x) = 0 (3)

where k is the wavenumber k = ω
c , and ∇2 = 4.

3. STATEMENT OF PROBLEM
We wish to solve an exterior Neumann axisymmetric scattering problem. Given a

continuous function g on ∂D, find a radiating solution u ∈ C2(R3�D̄)∩C(R3�D)
to the Helmholtz equation

4u+ k2u = 0 in R3�D̄ (4)

which satisfies the boundary condition

∂u

∂ν
= g on ∂D (5)

in the sense of uniform convergence on ∂D. Let D be a doubly connected domain
in R3. We assume the boundary ∂D to be connected and of class C2,β. by ν we
denote the unit normal vector to the boundary ∂D directed to the exterior of D.

4. AXISYMMETRIC FORMULATION
We are interested in modeling sound waves propagation through an axisymmetric

waveguides in R3. As is well-known, at high frequencies or large k, the computa-
tional requirements for the Helmholtz equation are very large. Methods for solving
the Helmholtz equation based on numerically solving boundary integral equations
produce large, dense, and complex systems of linear equations that need to be
solved, and the linear system is different for every wave number k. Direct meth-
ods for even medium size k can produce dense matrices on the order of 30,000
by 30,000, requiring tens of Gigabytes of main memory storage, and hundreds of
hours of computer time [5]. Even if iterative methods are used [20], the storage and
computational costs are enormous. Efficient numerical methods are still an active
research topic [4, 9, 23, 24, 6, 22, 14]. The Fast Multipole Method (FMM) can re-
duce the storage costs from n2 (where n is the number of points or elements used to
discretize the scatterer) to O(n log2 n) and the computational costs to O(n log2 n).
Unfortunately, a multilevel adaptive FMM for the Helmholtz equation is extremely
difficult to code, and to our knowledge, there are no free or open–source implemen-
tations currently available.

However, an axisymmetric obstacle scattering problem in R3, which we will in-
vestigate, can easily be reduced to a sequence of obstacle scattering problems in
R2; therefore the issue of efficiency is minimal. In fact, such a scattering problem
can be solved up to size 1000 wavelengths on current workstations.

The following equations describe our axisymmetric formulation. Let x̂, ŷ, ẑ denote
the Cartesian coordinate system. If x(t) is the x̂ component of a simple curve
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FIG. 1. This figure shows a rendering of a green torus. The red sphere shows the location of
the point source creating an incident sound field.

parameterized by t, and y(t) is the ŷ component of the same curve parameterized
by t, then if we rotate this curve around the x̂ axis, the equation for the scattering
surface y(t, θ) (denoted by ∂D, and parameterized by t and θ) described by this
rotation is

y(t, θ) = x(t)x̂+ y(t) cos(θ)ŷ + y(t) sin(θ)ẑ (6)

For example, if x(t) = 3+cos(t) and y(t) = 3+sin(t), 0 ≤ t ≤ 2π, the surface–of–
rotation ∂D is the green torus shown in figure 1. The red sphere shows the location
of a point source that creates the incident scattering field.

5. SOLUTIONS BASED ON SINGLE AND DOUBLE LAYER
POTENTIAL THEORY

Because we are interested in homogeneous free–space scattering, it is natural to
recast the Helmholtz equation into a boundary integral formulation on the surface
of the scatterer ∂D.

Colton and Kress [10] describe a solution of the exterior Neumann Helmholtz
equation by using a combined single and double layer approach from potential
theory.

We seek solutions in the form

u(x) =
∫

∂D

(
Φ(x,y)ϕ(y) + iη

∂Φ(x,y)
∂ν(y)

ϕ(y)
)
ds(y), x /∈ ∂D (7)

with continuous density ϕ and a real coupling parameter η 6= 0. Equation (7) solves
the exterior Neumann problem provided the density is a solution to the second–kind
integral equation

ϕ−K ′ϕ− iηTϕ = −2g (8)
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where the integral operators K ′ and T are

(K ′ϕ)(x) = 2
∫

∂D

∂Φ(x,y)
∂ν(x)

ϕ(y) ds(y) x ∈ ∂D (9)

(Tϕ)(x) = 2
∂

∂ν(x)

∫
∂D

∂Φ(x,y)
∂ν(y)

ϕ(y)ds(y), x ∈ ∂D (10)

This solution is unique for all (positive) wavenumbers k. If the coupling parameter
is chosen to be η = 0, then the single layer formulation is non-unique when k2 is
an interior Dirichlet eigenvalue of −4, often known as an “internal resonance.”

We note that technical difficulties arise when implementing a numerical method
based on equation (8) because of the hypersingular operator T . Kress [16] describes
a method attributed to Maue that can be used to overcome this difficulty.

Grannel et. al. [13] describe a method first proposed in the acoustics literature
by Burton that uses a combination of only weakly singular integral operators. K ′

and T are as defined above, and

(V ϕ)(x) =
∫

Γ

Φ(x,y)ϕ(y)ds(y), x ∈ ∂D (11)

(Kϕ)(x) =
∫

Γ

∂Φ(x,y)
∂ν(y)

ϕ(y) ds(y), x ∈ ∂D (12)

The integral equation suggested is

[I +K + αV0(T − T0) + α(K2
0 − I)]u = [V + αV0(K ′ − I)]g (13)

where the zero subscript on an operator signifies that operator in the “static” limit
k = 0.

6. NUMERICAL SOLUTION OF THE EXTERIOR NEUMANN
PROBLEM IN R2

Kress [16] describes a numerical method for the solution of the exterior Neumann
problem in R2 (cylindrical scattering). It solves the second–kind integral equation
(8) using a Nyström method on analytic boundary curves described by trigonomet-
ric interpolating polynomials. By properly treating the logarithmic singularity in
the fundamental solution of the Helmholtz equation in R2, the method achieves
superalgebraic convergence for analytic boundary curves.

We had originally hoped to modify this method for the solution of our axisym-
metric scattering problem, because by assuming axisymmetric symmetry, we are in
effect reducing our scattering problem in R3 to a one dimensional boundary inte-
gral in R2. The axisymmetric kernel has a logarithmic singularity, but we found
it impossible to find a suitable splitting of the axisymmetric kernel in the form
ln(kR(x,y))K1(x,y) + K2(x,y) in order to use the Nyström method. We sketch
the method because of its elegance and in the hope that someone will direct us to
a suitable splitting that would allow us to use this method on our axisymmetric
scattering problem.

In two dimensions, the fundamental solution to the Helmholtz equation is

Φ(x, y) :=
i

4
H

(1)
0 (κ|x− y|), x 6= y (14)
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where Hn is a Hankel function of the first kind of order n (see [10, 1]).

H(1,2)
n := Jn ± iYn (15)

where Jn are Bessel functions of order n

Jn(t) :=
∞∑

p=0

(−1)p

p!(n+ p)!

(
t

2

)n+2p

(16)

and Yn are Neumann functions of order n

Yn(t) :=
2
π
{ln t

2
+ C}Jn(t)− 1

π

n−1∑
p=0

(n− 1− p)!
p!

(
2
t

)n−2p

− 1
π

∞∑
p=0

(−1)p

p!(n+ p)!

(
t

2

)n+2p

{ψ(p+ n) + ψ(p)} (17)

Kress assumes the that the boundary curve ∂D possesses a regular analytic and
2π periodic parametric representation of the form

x(t) = (x1(t), x2(t)), 0 ≤ t ≤ 2π (18)

in a counterclockwise orientation satisfying [x′1(t)]
2 + [x′2(t)]

2 > 0 for all t. By

straightforward calculations using H
(1)
1 = −H(1)

0

′
, we transform the single layer

integral equation into the parametric form.

ψ(t)− i

2

∫ 2π

0

∂H
(1)
0 (κ r)
ν(t)

ψ(τ) ds(τ) = −2g0(t) (19)

where

r(t, τ) := {[x1(t)− x1(τ)]2 + [x2(t)− x2(τ)]2}
1
2 (20)

After some algebra, we can reduce this equation to the form

ψ(t)−
∫ 2π

0

K(t, τ)ψ(τ)dτ = g(t), 0 ≤ t ≤ 2π (21)

K(t, τ) =
i κH

(1)
1 (κ r(t, τ))
2 r(t, τ)

{x′2(t)[x1(τ)− x1(t)]− x′1(t)[x2(τ)− x2(t)]}

{[x′1(τ)]2 + [x′2(τ)]
2} 1

2

{[x′1(t)]2 + [x′2(t)]2}
1
2

(22)

If we split the kernel K into two parts

K(t, τ) = K1(t, τ) ln
(

4 sin2 t− τ

2

)
+K2(t, τ) (23)
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K1(t, τ) =
−k
2π

J1(k r(t, τ))
r(t, τ)

{x′2(t)[x1(τ)− x1(t)]− x′1(t)[x2(τ)− x2(t)]}

{[x′1(τ)]2 + [x′2(τ)]
2} 1

2

{[x′1(t)]2 + [x′2(t)]2}
1
2

(24)

K2(t, τ) = K(t, τ)−K1(t, τ) ln
(

4 sin2 t− τ

2

)
(25)

K1 and K2 are analytic, and the diagonal terms are

K2(t, t) = K(t, t) =
1
2π

x′2(t)x
′′
1(t)− x′1(t)x

′′
2(t)

[x′1(t)]2 + [x′2(t)]2
(26)

(and K1 = 0). The Nyström method consists in the straightforward approximation
of the integrals by quadrature formulas. For the 2π periodic integrands, we choose
an equidistant set of knots

tj :=
πj

n
, j = 0, . . . , 2n− 1, (27)

and the quadrature rule∫ 2π

0

ln
(

4 sin2 t− τ

2

)
f(τ)dτ ≈

2n−1∑
j=0

R
(n)
j (t)f(tj), 0 ≤ t ≤ 2π (28)

with the quadrature weights given by

R
(n)
j (t) := −2π

n

n−1∑
m=1

1
m

cosm(t− tj)−
π

n2
cosn(t− tj), j = 0, . . . , 2n− 1,

and the trapezoidal rule ∫ 2π

0

f(τ)dτ ≈ π

n

2n−1∑
j=0

f(tj) (29)

Both these numerical integration formulas are obtained by replacing the integrand
f by its trigonometric interpolation polynomial and then integrating exactly. In the
Nyström method, the integral equation is replaced by the approximating equation

ψ(n)(t)−
2n−1∑
j=0

{R(n)
j (t)K1(t, tj) +

π

n
K2(t, tj)}ψ(n)(tj) = g(t) (30)

(3.72) reduces to solving a linear system of equations

ψ
(n)
i −

2n−1∑
j=0

{R(n)
|i−j|K1(ti, tj) +

π

n
K2(ti, tj)}ψ(n)

j = g(ti) (31)

for i = 0, 1, . . . , 2n− 1, where

R
(n)
j := R

(n)
j (0) = −2π

n

n−1∑
m=1

1
m

cos
mjπ

n
− (−1)jπ

n2
, j = 0, . . . , 2n− 1, (32)
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7. SINGULARITIES IN THE AXISYMMETRIC KERNEL
In order to solve the three dimensional axisymmetric scattering problem, we

need an an expression for the axisymmetric free space Green’s function. x and y
are points in R3 on the surface of rotation ∂D. In order to keep the notation similar
to the discussion of the Nyström method in R2, we will again parameterize our two
dimensional boundary curve with trigonometric interpolating polynomials x and y
indexed by t and τ , but with the additional variables θt and θτ which describe angle
of the surface of rotation. x and y are then defined as

x(t, θt) = x(t)x̂+ y(t) cos(θt)ŷ + y(t) sin(θt)ẑ (33)

y(τ, θτ ) = x(τ)x̂+ y(τ) cos(θτ )ŷ + y(τ) sin(θτ )ẑ (34)

If we define R(x,y) as the distance between points x and y,

R(x,y) =√
[x(t)− x(τ)]2 + [y(t) cos(θt)− y(τ) cos(θτ )]2 + [y(t) sin(θt)− y(τ) sin(θτ )]2

(35)

For simplicity in notation, and to be consistent with [13, 18], we introduce the
functions a(t, τ) and b(t, τ), and from simple trigonometric reduction derive an
expression for R(x,y) for x and y on ∂D

a(t, τ) = (x(t)− x(τ))2 + y2(t) + y2(τ) (36)

b(t, τ) = 2 y(t) y(τ) (37)

R(t, τ, θt, θτ ) = (a(t, τ)− b(t, τ) cos(θt − θτ ))
1
2 (38)

If we assume that our boundary conditions are also axisymmetric g(t, θt) =
g(t, 0), then for our axisymmetric horn the surface integral operators are effec-
tively replaced with one-dimensional integral operators over ∂D. Recall that the
free space Green’s function for the Helmholtz equation in R3 is

Φ(x,y) =
1
4π

eikR

R
(39)

Because R now only depends on R(t, τ, θ), we obtain axisymmetric kernels of the
form

K(t, τ) =
1
4π

∫ 2π

0

ei k R

R
dθ (40)

When t = τ and θ = 0, the kernel in equation (40) becomes singular, and in
order to solve the boundary integral equation numerically the singularity must be
dealt with.

For our first attempt at treating the singularity in the axisymmetric kernel, we
followed a suggestion from [13]. They described a method where they subtract out
the

∫
1
R logarithmic singularity (which is static, i.e. not dependent on k):∫ 2π

o

eikR

R
=
∫ 2π

o

eikR − 1
R

+
∫ 2π

o

1
R

(41)
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After suitable manipulation, this equation can be recast as a hypergeometric series.
From [1, 13, 12, 17],

∫ 2π

0
1
R d θτ is a complete elliptic integral of the first kind Ke(m)

which can be written as a hypergeometric series H(α, β; c; z)∫ 2π

0

1
R(t, τ, θτ )

d θτ = 2 g(t, τ)Ke(m(t, τ)) = g(t, τ)πH(
1
2
,
1
2
; 1;m(t, τ)) (42)

m(t, τ) =
2 b(t, τ)

a(t, τ) + b(t, τ)
, g(t, τ) =

2√
a(t, τ) + b(t, τ)

(43)

Ke(m) =
1
2
πH(

1
2
,
1
2
; 1;m) (44)

H(α, β;α+ β;m) = (45)

Γ(α+ β)
Γ(α) Γ(β)

∞∑
n=0

(α)n (β)n

(n!)2
[2ψ(n+ 1)− ψ(α+ n)− ψ(β + n)− ln(1−m)](1−m)n

(46)

∫ 2π

0

1
R(t, τ, θτ )

=
∫ 2π

0

dθ√
a(t, τ)− b(t, τ) cos(θ)

= (47)

=
2

π
√
a+ b

∞∑
n=0

(
Γ
(

1
2 + n

)
(n!)

)2(
a− b

a+ b

)n(
2Ψ(n+ 1)− 2Ψ

(
1
2

+ n

)
− ln

(
a− b

a+ b

))
(48)

Γ(z) =
∫ ∞

0

tz−1 e−tdt Gamma Function (49)

ψ(z) =
d[ln(Γ(z))]

dz
Psi (Digamma) Function (50)

From these equations, we can write an explicit expression for the logarithmic sin-
gularity

ln(a(t, τ)− b(t, τ))

(
2L(t)

π
√
a(t, τ) + b(t, τ)

) ∞∑
n=0

(
Γ(n+ 1

2 )
n!

)2(
a(t, τ)− b(t, τ)
a(t, τ) + b(t, τ)

)n

︸ ︷︷ ︸
K1(t,τ)

(51)
Unfortunately, this singularity extraction does not completely treat the logarith-

mic singularity, as noted [5, 4], because the derivatives of eikR−1
R are unbounded.

This would limit the convergence of the previously described Nyström method to
a low order method.

Kress directed us to paper he had written about the magnetic confinement of
an electrically conducting fluid in a torus (with applications in fusion research)[15],
which happens to have the same form as our exterior Neumann axisymmetric scat-
tering problem. In this paper, he includes a more involved procedure in order to
treat the logarithmic singularity: “For a satisfactory numerical approximation a
careful investigation of the nature of the singularity of the kernels is necessary.
Since essentially we are solving a two-dimensional boundary–value problem in the
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cross–section of ∂D we expect a logarithmic singularity when t = τ .” Here, he
defines (for integers m) the integrals

Im(t, τ) =
∫ 2π

0

[R(t, τ, θ)]m−1dθ (52)

and

Jm(t, τ) =
∫ 2π

0

cos(θ)[R(t, τ, θ)]m−1dθ (53)

where R(t, τ, θ) are as defined in (38) (with θτ = 0). Through partial integration,
Kress introduces the recurrence equations

Im+2 = pIm − qJm (54)

and

(m+ 3)Jm+2 = (m+ 1)[pJm − qIm] (55)

where for even indices the initial terms are given through

I0 =
4

(p+ q)
1
2
K(k̂) (56)

and

J0 =
4

q(p+ q)
1
2
[pK(k̂)− (p+ q)E(k̂)] (57)

where

p(t, τ) = [y(t)]2 + [y(τ)]2 + [x(t)− x(τ)]2

and

q(t, τ) = 2y(t)y(τ)

where

k̂(t, τ) =
(

2q(t, τ)
p(t, τ) + q(t, τ)

) 1
2

and E and K denote the complete elliptic integrals

E(k̂) =
∫ 2π

0

(1− k̂2 sin2(θ))
1
2 dθ

K(k̂) =
∫ 2π

0

(1− k̂2 sin2(θ))−
1
2 dθ

After a few more pages of manipulation of this sorts he arrives at a suitable splitting
of the axisymmetric kernels in the form ln(Ks(t, τ))K1(t, τ) + K2(t, τ), where for
analytic boundary cross sections of the torus the kernels K1 and K2 are analytic.
He then uses the exact same Nyström quadrature method with trigonometric in-
terpolation polynomials as described above for the R2 case to solve the boundary
integral equations in this axisymmetric setting.



AXISYMMETRIC ACOUSTIC SCATTERING BY INTERPOLATION 11

Unfortunately, as he states on page 337: “Note that equations (54) and (55) are
unstable, but they can be transformed into recurrence relations for Îm = km

m! Im and
Ĵm = km

m! Jm which turn out to be stable for k not too large.” Also unfortunately,
he gives no estimate of what “too large” is.

We found in our own numerical tests that this recursion scheme is unstable (in
double precision) for ka greater than approximately 5, where a is a characteristic
length scale (1 in our tests). This would limit the usefulness of this scheme as a
numerical method to only low frequency scattering problems, despite the high–order
convergence.

8. OBSTACLE SCATTERING BY INTERPOLATION
Because of the difficulties in finding a suitable splitting of the logarithmic singu-

larity in the axisymmetric formulation, we decided to develop a numerical solution
method based on solving a first–kind integral equation by interpolation. In this
formulation, the points x and y never coincide, and the kernels are thus never sin-
gular. The following method is based on a seminar given on 9 October 2000 at the
Courant Institute, presented by Yu Chen.[8]

We note that many others have solved Helmholtz scattering problems by solving
a first–kind integral equation. In the literature, this has been called a “Null Field”
or “T–matrix” method, for example. A recent review summarizes these methods
under the name “discrete source” methods [11].

Our method is described below.
We assume that the obstacleD is surrounded by a homogeneous medium, referred

to as the free space.
We will adopt the point of view that a wave, incident or scattered, is generated

by its sources: (i) The incident wave u0 by sources outside D (ii) The scattered
wave v by sources on the scattering surface ∂D.

For simplicity, we assume that the incident wave is generated by a point source
at x0 outside D,

u0(x) =
1
4π

eik|x−x0|

|x− x0|
x 6= x0 (58)

Outside the support of its sources, a time–harmonic wave w in free space satisfies
the Helmholtz equation

4w(x) + k2w(x) = 0 (59)

where k = ω
c is the wavenumber, ω is the temporal frequency, and c is the wave

speed.
Therefore, outside D, the incident and scattered waves uo, v satisfy

4u0(x) + k2u0(x) = δ(x− x0) (60)

4v(x) + k2v(x) = 0 (61)

and u(x) = u0(x) + v(x) is the total field, representing pressure at x.
The mechanical and physical properties of the obstacle surface ∂D determine the

boundary conditions for v
(1) Soft boundary – pressure vanishes: u0 + v = 0 (Dirichlet)
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(2) Hard boundary – displacement vanishes: ∂(u0+v)
∂n = 0 (Neumann)

n is the outward unit normal of ∂D
We therefore have Dirichlet or Neumann boundary conditions for the scattered

field v on ∂D

4v(x) + k2v(x) = 0, x ∈ R3 � D̄ (62)

v = −u0 or
∂v

∂n
= −∂u0

∂n
x ∈ ∂D (63)

Together with the Sommerfeld radiation condition

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0 r = |x| (64)

both these boundary value problems are well–posed, and uniquely determines v
from the incident field u0 on ∂D.

In the approach of the Helmholtz equation or boundary integral equation, it is
always the knowledge of the incident field u0 on the boundary ∂D that uniquely
determines the scattered field. The interior D is of no concern to us, and the
scattering problem is never defined inside D. We wish to explore the interior of D
by re–interpreting the scattering problem in the interior.

For simplicity, we assume that the wave number k is not an interior Dirichlet or
Neumann eigenvalue, and that ∂D is smooth.

Let us forget for a moment the original scattering problem by assuming that
there is no obstacle in D. Then the whole space becomes free space in and outside
D. Except at x0, the incident field u0 is well–defined everywhere, particularly in D.
Under the conditions that k is not an interior Dirichlet eigenvalue, it is well–known
that there exists a unique, smooth distribution α of monopole sources on ∂D whose
potential matches u0 inside D:

u0(x) =
∫

∂D

G(x,y)α(y)ds x ∈ D (65)

where for 3–D

G(x,y) = Φ(x,y) =
1
4π

eik|x−y|

|x− y|
(66)

We will refer to the point source at x0 outside D which generates the incident field
u0 as the primary source, and the monopole sources α on ∂D as the equivalent or
secondary sources. To an observer in D, the primary and secondary sources look
identical (or sound identical for acoustic waves).

Similarly, under the condition that k in not an interior Neumann eigenvalue, there
exists a unique, smooth distribution β of dipole sources on ∂D whose potential
matches u0 inside D:

u0(x) =
∫

∂D

∂G(x,y)
∂n(y)

β(y)ds, x ∈ D (67)

The two obstacle scattering problems with Dirichlet and Neumann boundary
conditions are equivalent to the determination of the equivalent (secondary) sources
of monopoles or dipoles.
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Theorem. Let k be not an eigenvalue and ∂D smooth. then
(i) v defined by the formula

v(x) = −
∫

∂D

G(x,y)α(y)ds, x ∈ R3 �D (68)

is a solution of the Dirichlet problem
(ii) v defined by the formula

v(x) = −
∫

∂D

∂G(x,y)
∂n(y)

β(y)ds, x ∈ R3 � D (69)

is a solution of the Neumann problem.
Solving the obstacle scattering problem is equivalent to finding the secondary

sources on ∂D. In order to find the secondary sources by interpolation, we need to
define Γ, a smooth, closed curve in D, parallel and sufficiently close to ∂D. The
secondary sources we seek then satisfy the equation

u0(x) =
∫

∂D

G(x,y)α(y) ds, x ∈ Γ (70)

for the Dirichlet case and

u0(x) =
∫

∂D

∂G(x,y)
∂n(y)

β(y)ds, x ∈ Γ (71)

for the Neumann case.
To determine α or β, a first kind integral equation has to be solved. There are

advantages and disadvantages in treating a first kind integral equation numerically.
We will first discuss the advantages and then consider ways to to minimize the
drawbacks. The main advantage is that the kernels are not singular – there is
no need to design quadratures for singular integrals. As we have noted, even if we
have available quadratures for singular integrals, it requires knowledge of the kernel
K(x,y) = g(x,y) s(x,y) + h(x,y), (where s(x,y) is singular when x = y and g

and h are smooth) which may not be available.
In order to solve, e.g., the integral equation

u0(x) =
∫

∂D

G(x,y)α(y) ds, x ∈ Γ (72)

it seems that we need to discretize the integral by quadrature. Instead, we may
change our point of view, and there is no need to design quadrature at all – the
quadrature issue can be replaced by interpolation. Why interpolation? For sim-
plicity, we assume that the primary sources are monopoles located on Σ which is
separated from ∂D by a distance d – the linear map A : C(Σ) → C(D) defined by
the formula

u0(x) = (Aη)(x) =:
∫

Σ

G(x,y)η(y) ds, x ∈ D (73)

maps the primary source η to its incident field u0, and is a compact linear operator,
with singular values decaying exponentially to zero. For a given precision ε, the
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numerical rank of A is finite and proportional to | log(ε)|. This rank(A) is the
number of degrees of freedom to specify, to the same precision, an arbitrary incident
field u0 in D generated by source η on Σ. Therefore, the task of finding the secondary
sources on ∂D to match u0 in D to precision ε becomes an issue of matching these
rank(A) parameters which specify u0 in D.

Algorithm for Obstacle Scattering by Interpolation

• Choose n equispaced points {yj} on ∂D as the locations of the secondary
point sources, with h as the sampling interval.

• Choose the parallel curve or surface Γ in D that is separated from ∂D by a
constant multiple of h.

• Place m equispaced points {xi} on Γ to sample uo.

• Solve the m–by–n linear system with m ≥ n

u0(xi) =
n∑

j=1

G(xi,yj)αj , i = 1, 2, . . .m (74)

for the Dirichlet case or

u0(xi) =
n∑

j=1

∂G(xi,yj)
∂n(yj)

βj , i = 1, 2, . . .m (75)

for the Neumann case as a least–squares problem.

This is a standard least–squares problem for interpolation with basis functions
bj(x) = G(x,y) and interpolation points xi.

The points {xi} and {yj} do not have to be equispaced, and there is no need for
quadrature weights.

The solution {αj} or {βj} is not an approximation to {α(yj)} or {β(yj)} – it is
more likely to be {α( yj)wj} or {β(yj)wj} where wj are some sort of (unknown)
quadrature weights.

Interpolation is not sensitive to the complication of geometry, and computer
coding in two and three dimensions is simple.

The main drawback of this approach is ill-conditioning. For a fixed location of
Γ, the m–by–n linear system becomes exponentially ill–conditioned as m and n

increase. As a compromise, it turns out that in double precision of 16 digits, a
separation of the testing locations on Γ from sources on ∂D by 3 to 4 h is ideal to
balance conditioning and accuracy. h is the distance between the sources on ∂D.
The numerical rank of the m–by–n linear system for a condition number of 108

grows linearly with n, and the scattered field v has about 8 correct digits.
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9. NUMERICAL RESULTS IN R3 – SCATTERING OFF
SOUND–SOFT AND SOUND–HARD SPHERES

As a first test of our numerical method, we will compute the scattering off sound–
soft and sound–hard spheres. This is a good test, because we have an exact ana-
lytical series solution to compare against.

The exact solution [3] of an incident wave V i created by a point source at r0 =
(r0, 0, 0) such that V i = eikR

kR scattering off a sound soft sphere is given by :

V i + V s = i
∞∑

n=0

(2n+ 1)Pn(cos θ)h(1)
n (kr>)[jn(kr<)− jn(ka)

h
(1)
n (ka)

h(1)
n (kr<)] (76)

Where jn,h(1)
n , and Pn are spherical Bessel, spherical Hankel, and Legendre func-

tions as defined in [1]:

jn(x)=̇
√

π

2x
Jn+ 1

2
(x) (77)

h(1)
n (x)=̇

√
π

2x
H

(1)

n+ 1
2
(x) (78)

and a is the radius of the sphere.
The exact solution of a point source scattering off a sound hard sphere is:

V i + V s = i

∞∑
n=0

(2n+ 1)Pn(cos θ)h(1)
n (kr>)[jn(kr<)− j′n(ka)

h
(1)′
n (ka)

h(1)
n (kr<)] (79)

Where the ′ denotes the derivative:

j′n(x) = −1/4
√

2Jn+ 1
2
(x)π

1√
π
x

x−2 + 1/2
√

2
√
π

x(
−Jn+ 3

2
(x) +

(n+ 1/2) Jn+ 1
2
(x)

x

)
(80)

h(1)′

n (x) = −1/4
√

2H(1)

n+ 1
2
(x)π

1√
π
x

x−2 + 1/2
√

2
√
π

x−H(1)

n+ 3
2
(x) +

(n+ 1/2)H(1)

n+ 1
2
(x)

x

 (81)

These equations were computed in Matlab to machine precision ( 10−16).
Our scattering surface ∂D is a sphere of radius 1 centered at the origin (0, 0, 0).

In order to implement our interpolation method, we need to place n equispaced
points {yj} on ∂D as locations of the secondary sources, and m points {xi} on the
surface of the the smaller sphere Γ inside D of radius rΓ as the testing locations. In
order to do so, we create an algorithm that places points spaced approximately h
apart in both longitude and latitude. This quasi-uniform spacing was used for both
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the location of the secondary sources {yj} on ∂D and the location of the sampling
points {xi} on the sphere Γ, also located at the origin, but with a radius 1− 3h.

The interpolation algorithm was coded in ANSI C. The results in Table 1–2 and
Figure 2 were obtained on a Pentium II 266MHz PC running Linux and compiled
using GCC3, while the results in Figure 3 were obtained on an Sun Ultra–80 work-
station using the Sun C compiler. In both cases the LAPACK[2] complex SVD
based least–squares routine ZGELSS was used to solve the linear system. Under
Linux, good performance was obtained by utilizing the BLAS from the ATLAS
project 4. Matlab 5 was used to compute the analytic series solution, as well as for
visualization.

Table 1 shows numerical convergence results for k = 5. The point source is
located at (2, 0, 0), and the measurement locations are at (5, 0, 0) (the backscattered
wave) and (−5, 0, 0) (the shadow region). The total field V i + V s is shown. r g is
rΓ, the radius of the inner surface Γ. sec represents the wall clock running time of
the code, rounded to the nearest second. The last line of the table shows the result
of equations (76) and (79).

Table 1.

Point source at (2,0,0) scattering off a sound-soft sphere at (0,0,0) of radius a=1, ka = 5

m n ~h r_g (5,0,0) real (5,0,0) imag (-5,0,0) real (-5,0,0) imag cond(A) sec

87 57 0.4 0.4 -6.7142802627e-02 4.4483587304e-02 6.4686330664e-03 -8.1311232739e-04 4.5e+03 <1
142 128 0.3 0.4 -6.6453078943e-02 4.4201263537e-02 6.2069894822e-03 -1.4773976973e-03 2.5e+05 <1
359 273 0.2 0.4 -6.6451940499e-02 4.4198987138e-02 6.2071128956e-03 -1.4764840918e-03 1.5e+08 8

analytic -6.6451940370e-02 4.4198987320e-02 6.2071127911e-03 -1.4764844458e-03

Point source at (2,0,0) scattering off a sound-hard sphere at (0,0,0) of radius a=1, ka = 5

m n ~h r_g (5,0,0) real (5,0,0) imag (-5,0,0) real (-5,0,0) imag cond(A) sec

87 57 0.4 0.4 -3.6383633845e-02 3.8638506818e-02 2.0634359690e-02 -2.8529687181e-02 3.1e+03 <1
142 128 0.3 0.4 -3.7652381946e-02 3.7828789148e-02 2.0309935926e-02 -2.8089469539e-02 1.1e+05 <1
359 273 0.2 0.4 -3.7653861003e-02 3.7832489048e-02 2.0304918393e-02 -2.8093988607e-02 4.2e+07 9

analytic -3.7653862030e-02 3.7832486880e-02 2.0304919427e-02 -2.8093984709e-02

Table 2 shows the convergence results for k = 10. Note the high order convergence
is clearly visible – as n is approximately doubled from 273 to 523 the number of
correct digits approximately doubles. Figure 2 shows a plot of 00 → 1800 at radius
5, with the lower plot showing the residuals between the numerical method and and
the analytical series solution (although the magnitude of the complex total field is
plotted), different from the real and imaginary results presented in Table 1).

3http://www.gnu.org
4http://www.netlib.org/atlas
5http://www.mathworks.com
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FIG. 2. Numerical results of a point source scattering off a sphere, ka = 10

Table 2.

Point source at (2,0,0) scattering off sound-soft sphere at (0,0,0) of radius a=1, ka = 10

m n ~h r_g (5,0,0) real (5,0,0) imag (-5,0,0) real (-5,0,0) imag cond(A) sec

87 57 0.4 0.4 -1.1891195081e-03 -3.5159612472e-02 -9.2353883066e-03 7.1579561525e-04 1.6e+02 <1
142 128 0.3 0.4 1.0929161580e-03 -3.0797604413e-02 4.3815531014e-03 -2.8674773093e-03 2.6e+04 <1
359 273 0.2 0.4 -2.4256150170e-03 -3.1248300099e-02 1.4789099386e-03 -1.8234637170e-03 3.4e+07 8
612 523 0.15 0.5 -2.4306505313e-03 -3.1234187810e-02 1.4827205481e-03 -1.8190039826e-03 1.5e+07 51

1361 1186 0.1 0.7 -2.4306503392e-03 -3.1234187450e-02 1.4827172492e-03 -1.8190039395e-03 1.1e+07 585
analytic -2.4306503468e-03 -3.1234187447e-02 1.4827172421e-03 -1.8190039235e-03

Point source at (2,0,0) scattering off sound-hard sphere at (0,0,0) of radius a=1, ka = 10

m n ~h r_g (5,0,0) real (5,0,0) imag (-5,0,0) real (-5,0,0) imag cond(A) sec

87 57 0.4 0.4 9.8448546678e-03 -3.3325141244e-02 -8.6282279899e-03 5.1160218371e-04 2.5e+02 <1
142 128 0.3 0.4 1.1557475756e-02 -4.0235301753e-02 -7.1020835532e-03 -1.7694079884e-02 3.9e+02 <1
359 273 0.2 0.4 1.2085769118e-02 -3.6015814670e-02 -3.3066103015e-03 -1.7431523327e-02 2.1e+07 8
612 523 0.15 0.55 1.2114295862e-02 -3.6031960744e-02 -3.3107428813e-03 -1.7435787053e-02 5.5e+06 52

1361 1186 0.1 0.7 1.2114294325e-02 -3.6031963236e-02 -3.3106965141e-03 -1.7435790404e-02 2.3e+06 607
analytic 1.2114294460e-02 -3.6031963407e-02 -3.3106960214e-03 -1.7435790456e-02

Figure 3 shows the results for k = 25. In this figure, n = 10015, m = 12234,
h = 0.035, and rΓ = 0.8775. This large matrix A (1.8e+09 bytes of main memory)
took about 100 hours to solve on a Sun Ultra80 (440Mhz), although the machine
was heavily loaded so the timing is not precise. The condition number of the the
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FIG. 3. Numerical results of a point source scattering off a hard sphere, ka = 25

matrix A was 9.2e+06. Note again the high accuracy of the results compared to the
analytical series solution. Obviously, direct methods for high frequencies scattering
in R3 are not practical. It is possible to increase the efficiency of boundary integral
formulations of scattering by using the Fast Multipole Method [9], although the
coding complexity increases by orders of magnitude.

10. AXISYMMETRIC SCATTERING BY INTERPOLATION

In this section we describe axisymmetric reduction of the problem, and the cor-
responding drastic reduction in computational requirements.

We describe our scattering surface–of–rotation ∂D as a simple smooth curve in
R2 represented by the trigonometric interpolating polynomials x(t) and y(t) rotated
around the x̂ axis

∂D : y(t, θ) = x(t) x̂+ y(t) cos θ ŷ + y(t) sin θ ẑ (82)

We require y(t) > 0 so that our surface–of–rotation remains doubly connected.
Similarly, we define the testing surface–of–rotation Γ inside ∂D by rotating trigono-
metric interpolating polynomials xΓ(τ) and yΓ(τ) around the x̂ axis

Γ : x(τ, φ) = xΓ(τ) x̂+ yΓ(τ) cosφ ŷ + yΓ(τ) sinφ ẑ (83)
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It is convenient to define a complex function w(t) and the Fourier series

w(t) =
∑

Am ei m t (84)

with Fourier coefficients Am so that x(t) is the real component of w(t) and y(t)
is the imaginary component of w(t): w(t) = x(t) + i y(t). Similarly, we define the
complex function wΓ(t) and the Fourier series

wΓ(τ) =
∑

Bm ei m τ (85)

and the Fourier coefficients Bm to represent xΓ(τ) and yΓ(τ): wΓ(τ) = xΓ(τ) +
i yΓ(τ).

The distance between the sources {yj} on the surface ∂D and the points {xi}
on the sampling surface Γ is

R(x,y) = |x− y|

=
√

(x(t)− xΓ(τ))2 + (y(t) cos θ − yΓ(τ) cosφ)2 + (y(t) sin θ − yΓ(τ) sinφ)2 (86)

If we allow only axisymmetric incident waves (i.e. in our case point sources lo-
cated on the x̂ axis), then we can set φ = 0, and sample the sum of our axisymmetric
Greens functions (dipole ring sources) only at xi = xΓ(τi) x̂+yΓ(τi) ŷ. We then get
the interpolation method for axisymmetric exterior sound–hard scattering

u0(xi) =
n∑

j=1

∂G(xi,yj)
∂n(yj)

βj , i = 1, 2, . . .m (87)

u0(xi) =
n∑

j=1

[∫ 2π

0

∇ eikR(xi,yj)

R(xi,yj)
· n(yj) dθ

]
βj , i = 1, 2, . . .m (88)

where

∇ eikR(xi,yj)

R(xi,yj)
· n(yj) =[

i keikR

R2
− eikR

R3

]
[x(tj)− xΓ(τi)]nx(tj) + [y(tj)ny(tj)]− [yΓ(τi)ny(tj) cos θ]

(89)

where nx(tj) is the x̂ component of unit normal n(yj) at point yj on ∂D, and
ny(tj) is the ŷ component of unit normal n(yj) at point yj on ∂D. Because in our
interpolation method the surface ∂D with the secondary dipole ring sources {yj}
is separated by a constant multiple from the points {xi} on Γ where we sample u0,
the integral ∫ 2π

0

∇ eikR(xi,yj)

R(xi,yj)
· n(yj) dθ (90)

is never singular, and so we can use a (simple) trapezoidal rule quadrature method
(equation (29)) to calculate the entries to the m–by–n matrix A.
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A similar method can of course be easily developed for sound–soft scattering,
but this method was not implemented, as we are primarily interested in sound–
hard scattering problems.

11. NUMERICAL RESULTS OF AXISYMMETRIC SCATTERING
BY INTERPOLATION

The previous section verified that the interpolation method provides for high–
order convergence for the scattering off spheres in R3. We then used this verified
code to solve the axisymmetric scattering problem of a torus (donut). For this test,
we put points over the entire surface of the torus in R3, in order to have a result
with which to compare the axisymmetric reduction.

We define the torus as a surface of revolution around the x̂ axis. Figure 4 shows
the 2–D plot of a circle of radius 1 centered at (3, 3, 0). If this circle is rotated
around the x̂ axis, the torus surface ∂D shown in green in figure 1 is created. (The
red sphere in figure 1 shows the location of the point source creating the incident
field u0). We place n secondary dipole ring sources {yj} on ∂D and m sampling
locations {xi} on the surface Γ, which is a torus of smaller minor radius rΓ inside
the torus ∂D:

y(t, θ) = (3 + cos t) x̂+ ((3 + sin t) cos θ) ŷ + ((3 + sin t) sin θ) ẑ (91)

x(τ, φ) = (3 + rΓ cos τ) x̂+ ((3 + rΓ sin τ) cosφ) ŷ + ((3 + rΓ sin τ) sinφ) ẑ (92)

Table 3 shows the convergence results for the R3 algorithm for an increasing num-
ber of points ( and a correspondingly smaller h). The two measurement locations
were (10, 0) and (−10, 0). Note that we get about 5-6 correct digits.

Table. 3.

Point Source Scattering off a Torus

Hard Scattering off a Donut: circle centered at (3,3) with radius 1 rotated around x axis

k = 1 Points in R^3

m n ~h r_g (10,0) real (10,0) imag (-10,0) real (-10,0) imag cond sec

251 210 0.7 0.3 -6.8402134678e-02 2.3976207623e-02 -1.1301001068e-01 6.2222169092e-03 6.7e+03 2
374 310 0.6 0.3 -8.4305463283e-02 -1.0179648780e-02 -1.3346522589e-01 1.6212337206e-02 6.1e+04 7
525 445 0.5 0.3 -8.9229986033e-02 -7.1128473763e-03 -1.3533949940e-01 1.5831504544e-02 2.9e+05 22
845 699 0.4 0.3 -8.9828706466e-02 -8.5026669554e-03 -1.3242508076e-01 1.5506175021e-02 5.3e+06 109

1501 1244 0.3 0.3 -8.8124939118e-02 -8.1715076674e-03 -1.3086030255e-01 1.6607440079e-02 2.5e+09 570
3630 2906 0.2 0.4 -8.7948648088e-02 -8.3274404979e-03 -1.3078400506e-01 1.6689566175e-02 3.2e+10 6994
6392 5135 0.15 0.55 -8.7948638110e-02 -8.3274279587e-03 -1.3078399705e-01 1.6689568333e-02 1.6e+11 52513

Axisymmetric Reduction

37 31 0.2 0.4 -8.7948638112e-02 -8.3274279611e-03 -1.3078399705e-01 1.6689568334e-02 2.9e+06 <1

The last line in table 3 (labeled “Axisymmetric Reduction”) shows the results
of implementing equation (87). The red circles in figure 4 show the location of
the n secondary dipole ring sources {yj}, and the green circles show the location
of the m sampling locations {xi} on Γ. The black circle shows the location of
the point source creating the incident field u0. The entire scattering algorithm
was implemented in 81 lines of matlab code. After verifying the results versus the
full R3 version, the algorithm was reimplemented in ANSI C (and as before, using
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FIG. 4. This figure shows the location of the points for axisymmetric reduction for a point
source (black circle) scattering off the torus defined by rotating the red circle around the x̂ axis
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FIG. 5. This figures shows the location of the points for axisymmetric reduction for a point
source (black circle) scattering off the elliptical torus (squashed donut) defined by rotating the
red ellipse around the x̂ axis

LAPACK and ATLAS BLAS for the SVD). The axisymmetric reduction and C code
reduced the solve time from a couple days to less than a second. In the C code, an
adaptive trapezoidal rule quadrature algorithm was used to compute the integral
in the dipole ring source term, and we check for at least 10 digits of accuracy.

Tables 4–5 show convergence results for k = 5 and k = 10.
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Table 4. Axisymmetric Sound Hard Torus Scattering Convergence Results

k = 5,

m n ~h r_g (10,0) real (10,0) imag (-10,0) real (-10,0) imag cond sec

37 31 0.2 0.5 -1.5050898714e-02 1.1303110197e-02 -5.3347553214e-02 1.0483839016e-01 7.3e+04 <1
74 62 0.1 0.7 -1.5050872665e-02 1.1303107622e-02 -5.3347555121e-02 1.0483839201e-01 1.3e+05 <1

150 125 0.05 0.85 -1.5050872670e-02 1.1303107633e-02 -5.3347555111e-02 1.0483839203e-01 6.8e+04 <1

k = 10,

m n ~h r_g (10,0) real (10,0) imag (-10,0) real (-10,0) imag cond sec

37 31 0.2 0.5 1.8034877708e-01 3.2296444198e-02 2.3977385065e-01 -4.0453620709e-01 3.4e+04 <1
74 62 0.1 0.7 1.8039297194e-01 3.2218774642e-02 2.3981373926e-01 -4.0446175188e-01 1.2e+05 <1

150 125 0.05 0.85 1.8039297332e-01 3.2218774621e-02 2.3981373907e-01 -4.0446175185e-01 7.4e+04 <1

Note the high–order convergence.
Figure 5 shows an ellipse that defines a “squashed donut” waveguide. Table 5

shows the convergence results. Figure 6 shows a visualization of the total field at
1024 x 768 field points. The log mag of the total field is colormapped in dB using
the default Matlab colormap. This high resolution image took about 24 hours
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to produce on heavily loaded Sun Ultra 80 workstation. We suspect that with a
less–loaded workstation, cache reuse would improve this time considerably.
Table 5.

Axisymmetric Sound Hard Elliptical Torus (squashed donut) Convergence Results

k=5

m n ~h r_g (10,0) real (10,0) imag (-10,0) real (-10,0) imag cond sec

74 62 0.1 0.7 -5.3571562584e-01 -2.1116739591e-01 2.8317361784e-01 3.0781477949e-01 2.9e+04 <1
150 125 0.05 0.85 -5.3423678507e-01 -2.1071284520e-01 2.8344284218e-01 3.0785039808e-01 3.4e+04 <1
301 251 0.025 0.925 -5.3421376870e-01 -2.1066971152e-01 2.8339399888e-01 3.0780424972e-01 2.1e+04 4

12. CONCLUSION
We have presented a simple, high–order method for the numerical solution of

sound propagating through sound–hard waveguides. A future research goal is to
use this algorithm as the forward component in solving an inverse problem. In the
design of modern high–power loudspeakers, directional horns are used to increase
the efficiency of radiated sound 6. When loudspeakers with horns are used together
to provide sound for large auditoriums, it is important to use horns with the correct
coverage pattern, so each section of seats is covered by only one loudspeaker. By
specifying the desired coverage pattern and solving an inverse scattering problem
[7], it should be possible to optimize loudspeaker horn geometry to improve the
coverage patterns and acoustic characteristics of modern high–power loudspeakers.

6see http://www.meyersound.com for information on high–power horn loudspeakers, especially
the paper about the design of the horn loudspeaker system that was recently installed in Carnegie
Hall, New York. A good reference is from Harry Olson [21], who was the director RCA labs, where
most of this technology was invented in the 1930’s and 1940’s.
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