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Abstract

We describe and implement a numerical method for scattering calculation in the

exterior of a sound-hard, axisymmetric domain in R3. Existing methods rely on

singularity extraction and separation in order to design high order quadrature for-

mulae, and experience numerical difficulties such as low order convergence [1,2] or

instability [3]. Our method does not require a quadrature, is spectrally convergent,

and is nearly trivial to program.

1 Introduction

We describe a simple, high-order numerical method for the simulation of sound

wave propagation through axisymmetric, sound-hard waveguides. Our under-

lying problem in application is an axisymmetric musical horn, and we are
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interested in its optimal design for the far field pattern.

As is well-known, the axisymmetric problem in R3 can be easily recast as a

sequence of obstacle scattering problems in R2 by means of the rotational sym-

metry, which in turn is convertible to boundary integral equations; therefore

the computational complexity is not an issue even for the highest frequencies

(about 20 kHz) at which the size of the horn is typically and considerably less

than 1000 wavelengths. The resulting linear system of the boundary integral

equation of this size can be directly solved with LU or QR factorizations and

on the current hardware.

However, the reduction by rotational symmetry makes the resulting Green’s

function extremely complicated in terms of algebraic structures of its loga-

rithm singularity, which makes the existing spectrally convergent quadrature

formulae difficult to apply. In fact there is no successful effort, to the best of

our knowledge, in addressing the puzzling issue of separating the logarithm

singularity in the reduced Green’s function.

The solution method we present here avoids the separation of the singularity,

and at the same time maintains spectral convergence, all at the expense of a

higher condition number of the resulting linear system to be solved. The high

condition number does not cause any practical stability problem (see §4.5) but

the spectral convergence stops when the error of the solution drops to about

10−8.

A major advantage of the new approach is the simplicity of coding. There

is no need for us to explicitly design quadratures for singular integrals. In

fact, the discretization of the boundary integral equation is more like that for

interpolation than for the quadrature.
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2 Boundary Integral Equation Formulation

In this section we specify the scattering problem, provide its boundary integral

equation formulation, describe the axisymmetry of the sound hard scatterer

D, and illustrate the difficulties involved in the quadrature designs.

2.1 Statement of Problem

Let D be a domain in R3 with smooth boundary ∂D, and let ν be the unit

outward normal vector. Given a continuous function g on ∂D, find a radiating

solution (the scattered wave) v ∈ C2(R3
�D̄) ∩ C(R3

�D), to the Helmholtz

equation

4v + k2v = 0 in R3
�D̄ (1)

subject to the boundary condition

∂v

∂ν
= g on ∂D (2)

2.2 Boundary Integral Equation

As is well known [4], the exterior Neumann problem for the Helmholtz equation

(1), a well-posed problem, is equivalent to the second–kind boundary integral

equation

ϕ−K ′ϕ− iηTϕ = −2g (3)

with η real and nonzero, and with the operators K ′, T defined by

(K ′ϕ)(x) = 2
∫
∂D

∂Φ(x,y)

∂ν(x)
ϕ(y) ds(y) x ∈ ∂D (4)

(Tϕ)(x) = 2
∂

∂ν(x)

∫
∂D

∂Φ(x,y)

∂ν(y)
ϕ(y)ds(y), x ∈ ∂D (5)
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where Φ is the free space Green’s function

Φ(x,y) =
1

4π

eik|x−y|

|x− y|
(6)

The scattered filed v can then be recovered from ϕ via the formula

v(x) =
∫
∂D

(
Φ(x,y)ϕ(y) + iη

∂Φ(x,y)

∂ν(y)
ϕ(y)

)
ds(y) (7)

2.3 Axisymmetric Reformulation

In the remainder of the paper, we will assume that D and g (see §2.1) are

axisymmetric around the x-axis. More specifically, let

Γ = { (x(t), y(t)) | t ∈ [0, 2π] } (8)

be a simple, smooth curve on the xy-plane. Denote by Ω the bounded domain

in R2 bounded by Γ. Let the axisymmetric surface ∂D be formed by the

rotation of this curve around the x-axis

∂D = {y(t, θ) ∈ R3 |y(t, θ) = (x(t), y(t) cos θ, y(t) sin θ) } (9)

which is parameterized by (t, θ) ∈ [0, 2π] × [0, 2π]. Let x,y be two arbitrary

points on ∂D with

x(t, θ) = x(t)x̂+ y(t) cos(θ)ŷ + y(t) sin(θ)ẑ (10)

y(τ, φ) = x(τ)x̂+ y(τ) cos(φ)ŷ + y(τ) sin(φ)ẑ (11)

Then

R(t, τ, θ, φ) = |x(t, θ)− y(τ, φ)|

=
√

[x(t)− x(τ)]2 + [y(t) cos(θ)− y(τ) cos(φ)]2 + [y(t) sin(θ)− y(τ) sin(φ)]2

= (a(t, τ)− b(t, τ) cos(θ − φ))
1
2 (12)
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with

a(t, τ) = (x(t)− x(τ))2 + y2(t) + y2(τ) (13)

b(t, τ) = 2 y(t) y(τ) (14)

Note that neither g nor ϕ depends on θ; we also obtain the axisymmetric

Green’s function, denoted by Ψ which is regarded as a function either of x,y

or of t, τ , by integrating (6)

Ψ(t, τ) =
1

4π

∫ 2π

0

ei k |x−y|

|x− y|
dθ (15)

where Ψ is independent of θ, φ due to the fact that R(t, τ, θ, φ) = |x(t, θ) −

y(τ, φ)| depends on θ−φ. Consequently and obviously, the boundary integral

equation (3) on ∂D reduces to one on Γ

ϕ−K ′ϕ− iηTϕ = −2g (16)

with g = g(t) independent of θ. The operators K ′ and T are still defined by

(4), (5) with Φ replaced by Ψ

(K ′ϕ)(x) = 2
∫
∂D

∂Ψ(x,y)

∂ν(x)
ϕ(y) ds(y) x ∈ ∂D (17)

(Tϕ)(x) = 2
∂

∂ν(x)

∫
∂D

∂Ψ(x,y)

∂ν(y)
ϕ(y)ds(y), x ∈ ∂D (18)

Note that now x and y are restricted on the curve Γ – in other words, they

are given by (10) and (11) with θ = 0.

2.4 Singularity in K ′ and its Quadrature Issues

In this section we will illustrate the difficulties experienced with the kernel of

K ′ whose proper quadrature treatment is required for the Nyström method to

discretize the boundary integral equation (16). Let’s assume for simplicity that
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k is not a Dirichlet eigenvalue in the interior of Γ; consequently, our scattering

problem can still be solved with η = 0 which we assume for the time being, so

that we never consider in this paper the quadrature issues involved in tackling

the operator T .

As is well known, the kernels Ψ, K ′ have logarithmic singularity which, in the

case of K ′, can always be written as

K ′(t, τ) = ln
(

4 sin2 t− τ
2

)
g1(t, τ) + g2(t, τ) (19)

where gj, as well as ϕ, are equally smooth as the curve Γ [4].

One of the most advanced methods to design a spectrally convergent quadra-

ture for (4) and other more general singular integrals [5,6] does not require

the knowledge of gj, but calls for a solution of a nonlinear system of equa-

tions with extremely high condition number when the number of quadrature

nodes n is large; therefore, its calculation must be carried out with extended

precision and could be extremely time consuming for n exceeding 100.

On the other hand, the most simple and popular method to design a spectrally

convergent quadrature for (4) is what we term as the corrected trapezoidal rule

[4,7] which requires the explicit decomposition (19). Unfortunately, there has

been no success in stabily computing the values of gj required in the corrected

trapezoidal rule; see, for example, [3], page 335. To be more precise, we found

in our own numerical tests that recursions (4.4), (4.5) in [3] which are said to

be “stable for k not too large”, become unstable for ka greater than about 5,

namely when the size of the scatterer is about a wavelength.
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3 The Interpolation Method

We describe and test a systematic method for the solution of the exterior

Neumann problem which is spectrally convergent and trivial to implement

because there is no need of quadrature at all. Let’s assume that k is not a

Neumann eigenvalue in the interior of Γ; see §3.3. We will consider only a

smooth curve Γ. We further require the knowledge of not the boundary value

g but its sources: The monopoles and dipoles which produce g. More precisely,

we require the ability to evaluate the incident wave or its first derivatives on

the boundary Γ or in the domain Ω.

Remark 1 Denote by G the free space Green’s function for the scattering

problem – it is (i/4)H0 or eikr/r for the two or three dimensional scattering

problem, it is Ψ of (15) for the axisymmetric scattering problem.

Our method will determine the double layer density ϕ on Γ such that the

scattered field v is given by

v(x) =
∫

Γ

∂G(x,y)

∂ν(y)
ϕ(y)ds(y) (20)

This very simple, and we think powerful, approach, whose coding is almost

trivial – an exterior Neumann problem in two or three dimensions could be

coded in a matter of hours – is not without side effects. It involves a solution

of a basically first kind integral equation, and consequently the convergence

stops at about 8 digits, for a double precision calculation. The culprit is of

course the condition number which not only restricts the precision – by itself

we don’t think it is a practical problem – but also excludes the use of an iter-

ative solver to deal with large scale problems. In three dimensions, the largest

problem which can be solved directly is about 10-by-10 square wavelengths;
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any problem substantially greater than that is prohibitive in CPU time of

a workstation or PC. In two dimensions, the high condition number is not a

practical problem, for example, for a scattering calculation of an axisymmetric

scatterer for the acoustic horn simulation. We are able to solve such a problem

with the boundary Γ of 1000 wavelengths, whereas an acoustic horn usually

has a Γ of less than 100 wavelengths.

3.1 Continuity and Interpolation

Let u0, u be the incident and total waves, and let v of (20) be the scattered

wave so that

u = u0 + v (21)

Our method, equally applicable to two and three dimensions, is based on the

two well known observations, one analytical the other numerical

Observation 2 The normal derivative of the double layer potential (20) is

continuous across the boundary Γ. Therefore, under the condition that k is

not an interior Neumann eigenvalue, the unique solution v of (20) to our

scattering problem is identical to the negative of the incident wave u0 inside

Ω.

See, for example, [4] for a proof.

Observation 3 Let Ω ⊂ R2 be a domain with a smooth boundary Γ on which

is laid an equispaced grid

Γh = {yj, j = 1, 2, . . . , n} (22)

of grid size h. Furthermore, denote by γ a curve inside Ω and parallel to Γ on
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which is laid an equispaced grid

γ~ = {xi, i = 1, 2, . . . ,m} (23)

of grid size ~ ≤ h. Finally, denote by Kh the m-by-n matrix

(Kh)ij =
∂G(xi,yj)

∂ν(y)
(24)

Then the condition number of Kh is bounded by about 108 and the double

layer potential v of (20) on γ~ is approximated to a precision about 10−8 by

the formula

ũ(xi) =
n∑
j=1

G(xi,yj)ϕj, xi ∈ γ~ (25)

provided that the parallel curves Γ, γ are separated by 3.5h for a sufficiently

small h > 0.

It follows immediately from the two observations that the double layer density

ϕ of (20) on Γ can be obtained as the unique solution of the least squares

problem

Kh ϕh = −u0|γ~ (26)

Remark 4 The least squares problem can obviously be regarded as an dis-

cretization of the first kind integral equation (see (20))

∫
Γ

∂G(x,y)

∂ν(y)
ϕ(y)ds(y) = −u0(x), x ∈ γ (27)

with the notable exception that γ is not fixed; it is dependent on h, and its

separation from Γ vanishes as h→ 0.

Remark 5 An alternative viewpoint to that of Remark 4 maybe more reveal-

ing of our method. The linear least squares problem (26) is typical for data

fitting or interpolation. Indeed, we determine the linear combination coeffi-
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cients ϕj so that the incident wave −u0 is matched or interpolated at the m

points xi on the curve γ in the least squares sense by using the basis functions

Bj(x) =
∂G(x,yj)

∂ν(y)
(28)

Hence the term “solving the boundary integral equation by interpolation”.

Remark 6 According to Observation 3, the interpolation is accomplished with

about 10−8 precision. This does not always guarantee that ϕj will be obtained

with the same precision – a lower precision occurs when the local curvature of

Γ becomes much greater than the average. Our numerical experiments show,

however, that the scattered wave v(x) in the exterior of Ω has about the same

precision 10−8 provided that x is separated from Γ at least by the same distance

by which Γ and γ are separated – about 3.5h (see §4.7 for a numerical example).

3.2 Generalizations of the Interpolation Method

We make a few more remarks on the generalizations of the interpolation

method.

Remark 7 The grid size h does not have to be uniform. For a graded mesh,

h measures the local density of the sampling grid points; therefore for a graded

mesh, γ will not be parallel to the boundary Γ – they become closer where Γ

is oversampled. Fortunately, our experiments show that Observation 3 is still

basically true. In §4.7, we present numerical evidence to support this claim.

Remark 8 The entire discussion and approach presented in §3.1 is obviously

generalizable to three dimensions where we assume that the surface Γ is sam-

pled with a mesh which is locally as close to a square of size h-by-h as possible
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for some h > 0. It is then this h that defines the local separation of the two

“parallel” surfaces Γ and γ. We found in our experiments that the choice of

the sampling points for interpolation, just as any distribution of points for in-

terpolation, is extremely flexible as long as the basic requirement for density

of sampling is met. It is extremely resilient to the abuse of arbitrary over-

sampling. This flexibility marks a noticeable difference between the points for

interpolation and those for the quadratures: The former is analytically based

and is perturbable whereas the latter is algebraically based and is rigid – a small

perturbation to the distribution of the quadrature nodes may utterly change the

nature of the process, usually rendering it low order or useless.

Remark 9 The assumption that k is not a Neumann eigenvalue in the inte-

rior of Ω does not exclude the possibility that k is a Dirichlet eigenvalue in

the interior of γ. When this happens or nearly happens, an incident wave u0

not identically zero may be zero or nearly zero on γ, which is analytically or

numerically problematic since the least squares problem will produce a zero or

nearly zero solution ϕ. As is well known [4], the impedance condition on γ

u0 + i µ
∂u

∂ν
, µ ∈ R1 is a parameter (29)

never vanishes or becomes small relative to ‖u0‖2 on Ω, and will be used to

perform the interpolation

(Kh + i µ Th)ϕh = −
(
u0 + i µ

∂u

∂ν

)
|γ~ (30)

with Th the m-by-n matrix

(Th)ij =
∂2G(xi,yj)

∂ν(x)∂ν(y)
(31)
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3.3 Interpolation for Resonant k

If k is a Neumann eigenvalue in the interior of Ω, the representation (20),

as is well known, becomes inadequate. This can be easily resolved using the

so-called representation theory approach [4]. Taking the two dimensional case

for example, we represent the scattered wave v in R2 \Ω with its Dirichlet and

Neumann data on Γ via Green’s second theorem

v(x) =
∫

Γ

[
∂G(x, ξ)

∂νξ
v(y)−G(x,y)g(y)

]
ds(y), x ∈ R2 \ Ω (32)

Therefore, for prescribed Neumann data g, we only need to determine the

Dirichlet data v|Γ. Since the right hand side of (32) vanishes for x ∈ Ω, it also

vanishes on γ, and we thus obtain

∫
Γ

∂G(x, ξ)

∂νξ
v(y) ds(y) =

∫
Γ
G(x,y)g(y) ds(y), x ∈ γ (33)

Let f : γ 7→ C be defined by

f(x) =
∫

Γ
G(x,y)g(y) ds(y) (34)

Once f is sampled on γ~, which requires a quadrature but for smooth func-

tions, it remains to apply the interpolation method in order to determine the

Dirichlet data v|Γ.

4 Numerical Results for Axisymmetric Case

We summarize in §4.1–4.4 a few points on implementing the interpolation

method applied to the case of sound hard, smooth, axisymmetric scatterers

illuminated by axisymmetric incident waves. We will demonstrate the perfor-

mance of our method with three examples in §4.5–4.7. For simplicity, we will
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only treat the nonresonant case: k is not a Neumann eigenvalue interior of Ω.

The resonant case can be analogously handled; see §3.3.

4.1 Sample the boundary curve Γ

The smooth curve Γ, in the xy plane whose rotation around the x-axis form

the axisymmetric scattering body, is usually discretized, or sampled with eq-

uispaced points in arclength. Due to the interpolation nature of the discretiza-

tion, the points may be equispaced in chord-length to give essentially the same

numerical performance. Moreover, they don’t have to be exactly equispaced

in arclength or chord-length, just as for interpolation on the interval [−1, 1],

the Chebyshev points are essentially as good as the Legendre points, or, say,

Legendre points plus a point in some arbitrary location in [−1, 1] – an abuse in

the sampling will not have any noticeable effect on the least squares problem

as long as the object is sampled with an adequate rate.

Local mesh refinement can also be arbitrarily added as necessary without

further concern. If an incident source point outside Γ is close to it, we must

locally sample Γ with a step size h that is no greater than 1/4 of the separation.

4.2 Sample the parallel curve γ

The parallel curve γ (see Observation 3) need not be created; only the grid

points γ~ are required for interpolation. For any point yj on Γh and for small h

compared to the radius of curvature at yj, consider the chord segment yjyj+1.

Move this segment in the inward normal direction by a distance 3.5h, and on

it we can choose a point xi for the grid γ~. For a given h adequate to sample
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Γ, our experiments show that ~ = h/1.4 is about sufficient to sample γ.

4.3 The discretized linear system

It follows from (27) that our discretized linear system is

n∑
j=1

∂G(xi,yj)

∂n(yj)
ϕj = u0(xi) i = 1, 2, . . . ,m; xi ∈ γ~, yj ∈ Γh (35)

where according to Remark 1

∂G(xi,yj)

∂n(yj)
=
∫ 2π

0
∇ eikR(xi,yj)

R(xi,yj)
· n(yj) dθ (36)

and

∇ eikR(xi,yj)

R(xi,yj)
· n(yj) =[

i keikR

R2
− eikR

R3

](
[x(tj)− γxi ]nx(tj) + [y(tj)ny(tj)]− [γyi ny(tj) cos θ]

)
(37)

n(yj) = (nx(tj), ny(tj)) is the outward unit normal of Γ and xi = (γxi , γ
y
i ) (see

§4.2). Since (36) is a regular integral, it can be easily evaluated numerically

via Gaussian quadrature or trapazoidal rule quadrature.

4.4 The least-squares solution

The entire axisymmetric scattering algorithm was implemented in 81 lines

of Matlab code. The least squares solution is obtained using either SVD or

the more efficient Householder QR with column pivoting; their solutions are

almost identical. When the oversampling is required on Γ, the spectrum cutoff

is done to 10−8, again, either on SVD or on the column pivoted QR.

We also coded the algorithm in ANSI C. The CPU timings and numerical
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convergence results presented in §4.5 – §4.7 are all based on the C code im-

plementation.

4.5 Numerical Results: Sound Hard Sphere

As a first test of our algorithm, we compute the scattering off a sound hard

sphere and compare it to the analytical series solution in order to verify accu-

racy.

The analytic solution of an incident wave V i created by a point source at

r0 = (r0, 0, 0) such that V i = eikR

kR
scattering off a sound hard sphere is given

by [8]:

V i + V s = i
∞∑
n=0

(2n+ 1)Pn(cos θ)h(1)
n (kr>)[jn(kr<)− j′n(ka)

h
(1)′
n (ka)

h(1)
n (kr<)] (38)

Where jn,h(1)
n , and Pn are spherical Bessel, spherical Hankel, and Legendre

functions as defined in [9]:

jn(x)=̇

√
π

2x
Jn+ 1

2
(x) (39)

h(1)
n (x)=̇

√
π

2x
H

(1)

n+ 1
2

(x) (40)

and ′ denotes the derivative:

j′n(x) = −1/4
√

2Jn+ 1
2
(x)π

1√
π
x

x−2 + 1/2
√

2

√
π

x(
−Jn+ 3

2
(x) +

(n+ 1/2) Jn+ 1
2
(x)

x

)
(41)

h(1)′

n (x) = −1/4
√

2H
(1)

n+ 1
2

(x)π
1√
π
x

x−2 + 1/2
√

2

√
π

x−H(1)

n+ 3
2

(x) +
(n+ 1/2)H

(1)

n+ 1
2

(x)

x

 (42)
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and a is the radius of the sphere (centered at the origin).

Table 2 shows the convergence results as the number of points per wavelength

λ increases for a problem of size ka = 50. Note that spectral convergence is

clearly exhibited. Also, as expected, the convergence stops at about 8 digits.

4.6 Numerical Results: Sound Hard Torus

As our next example, we compute the scattering of a point source from a

sound hard torus. The torus is formed by rotating a circle of radius 1 around

the x–axis. Figure 1 shows the geometry of the example (curves Γ and γ), the

location of the point source and the measurement location.

Table 1 shows the convergence results when k = 25.

4.7 Numerical Results: Sound Hard “Squashed” Elliptical Torus

In this section we describe the results from a point source scattering off of an

elliptical torus. This example more closely resembles a more complicated ge-

ometry situation that is likely to arise in study the sound propagating through

waveguides or musical horns. Figure 2 shows the curves Γ and γ that are ro-

tated around the x–axis to form the surface–of–rotation.

Figure 3 shows a visualization of the magnitude of the total pressure field (in

Decibels 20 log10(|u|)).

Table 3 shows the numerical convergence results of this elliptical torus waveg-

uide when k = 5, and Table 4 shows the numerical convergence results when
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k = 25. The elipse Γ used was

yj = (3 + 3 cos(θj), 3 + sin(θj)) θj =
2π j

n
j = 1, 2 . . . n (43)

Consequently, h and ~ are not constant. The locations of the m interpolation

points xi on γ~ where located as described in §4.2 and were placed 3.5h inward

from Γ. However, as noted in remark 7, we still get spectral convergence similar

to the equispaced h cases §4.5, §4.6. We tried cases from 3h spacing up to 6h

spacing and the convergence results are similar, with each different spacing

producing a slightly modified balance between conditioning and accuracy.
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Table 1

k = 25, Point Source at (0, 0, 0) Scattering of a Torus: Convergence Results. Mea-

surement at (6, 0, 0). Timings on a Sun UltraSPARC–IIi 333MHz.

n pts
λ real(6, 0, 0) imag(6, 0, 0) cond(Kh) sec

50 2 −3.76367558× 10−1 −5.24075879× 10−1 3.4× 104 16

75 3 −4.64249894× 10−1 −4.19129969× 10−1 1.8× 105 44

100 4 −4.64249856× 10−1 −4.19129371× 10−1 2.4× 105 73

125 5 −4.64249853× 10−1 −4.19129380× 10−1 2.8× 105 118

Table 2

Sound Hard Sphere Scattering Convergence Results. k = 50, a = 1, Point Source at

(2, 0, 0), measurement at (−5, 0, 0). Timings on a Sun UltraSPARC–IIi 333MHz.

n pts
λ real(−5, 0, 0) imag(−5, 0, 0) cond(Kh) sec

50 2 −9.84952112163× 10−4 2.08844578780× 10−3 2.9× 103 6

75 3 −2.17795860698× 10−3 −1.99585308419× 10−3 2.9× 105 16

100 4 −2.17795858130× 10−3 −1.99585302271× 10−3 7.0× 105 29

125 5 −2.17795858336× 10−3 −1.99585303039× 10−3 1.1× 106 49

150 6 −2.17795858361× 10−3 −1.99585302726× 10−3 1.5× 106 73

analytic −2.17795858673× 10−3 −1.99585302502× 10−3
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Table 3

Axisymmetric Sound Hard Elliptical Torus Convergence Results. k = 5

n m real(10, 0, 0) imag(10, 0, 0) cond(Kh)

31 37 −2.399280909245101× 100 −3.837220105033818× 10−1 1.06× 103

62 74 −5.342195808937857× 10−1 −2.107520916009695× 10−1 1.70× 106

83 99 −5.342286682748080× 10−1 −2.107502726151059× 10−1 4.17× 105

125 150 −5.342286817192076× 10−1 −2.107502839740987× 10−1 9.29× 104

251 301 −5.342286806187949× 10−1 −2.107502826867724× 10−1 4.69× 104

Table 4

Axisymmetric Sound Hard Elliptical Torus Convergence Results. k = 25

n m real(10, 0, 0) imag(10, 0, 0) cond(Kh)

125 150 −6.056849086854506× 10−1 −2.285777494365712× 100 5.09× 104

251 301 5.951955487916392× 10−1 −1.678901006004439× 100 3.27× 104

502 602 5.951955918630742× 10−1 −1.678901075986008× 100 3.73× 104

1005 1206 5.951955908636510× 10−1 −1.678901077850511× 100 4.84× 104

2010 2120 5.951955908637675× 10−1 −1.678901077850542× 100 5.17× 104
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Fig. 1. The red points are the location of the n points yj on Γ, and the green points

are the m testing locations xi on γ. The xi points are located a distance 3.5h from

yj . When rotated around the x–axis, the surface–of–rotation is a torus.
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Fig. 2. This figure shows the geometry of the elliptical torus waveguide defined by

rotating the the red ellipse around the x–axis. The red points are the location of

the n points yj on Γ, and the green points are the m testing locations xi on γ. The

xi points are located a distance 3.5h from yj . The blue arrows show the outward

unit normals n(yj).
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Fig. 3. A visualization of the total field from a point source scattering through the

elliptical torus waveguide defined in figure 2. The dimensions are 12 by 12. k = 5.

The colormap shows the magnitude of the total pressure field in Decibels.
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